Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Fogt, Nick (Ed.)Primates can rapidly detect potential predators and modify their behavior based on the level of risk. The gaze direction of predators is one feature that primates can use to assess risk levels: recognition of a predator’s direct stare indicates to prey that it has been detected and the level of risk is relatively high. Predation has likely shaped visual attention in primates to quickly assess the level of risk but we know little about the constellation of low-level (e.g., contrast, color) and higher-order (e.g., category membership, perceived threat) visual features that primates use to do so. We therefore presented human and chimpanzee (Pan troglodytes) participants with photographs of potential predators (lions) and prey (impala) while we recorded their overt attention with an eye-tracker. The gaze of the predators and prey was either directed or averted. We found that both humans and chimpanzees visually fixated the eyes of predators more than those of prey. In addition, they directed the most attention toward the eyes of directed (rather than averted) predators. Humans, but not chimpanzees, gazed at the eyes of the predators and prey more than other features. Importantly, low-level visual features of the predators and prey did not provide a good explanation of the observed gaze patterns.more » « less
-
The interaction between radio jets and quasar host galaxies plays a paramount role in quasar and galaxy co-evolution. However, very little is known at present about this interaction at very high−z. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations in Bands 7 and 3 of six radio-loud (RL) quasar host galaxies atz > 5. We recovered [C II] 158 μm line and underlying dust continuum emission at > 2σfor five sources, while we obtained upper limits for the CO(6-5) emission line and continuum for the remaining source. At the spatial resolution of our observations (∼1″.0–1″.4), we did not recover any perturbed or extended morphologies or kinematics, which are known signatures of potential mergers. These galaxies already host large quantities of gas (∼1010M⊙), with [C II] luminosities ofL[C II] ∼ 108 − 9 L⊙and [C II]-based star formation rates of 30 − 400 M⊙yr−1. In building their radio/submillimeter (radio/submm) spectral energy distributions (SEDs), we found that in at least four cases, the 1 mm continuum intensity arises from a combination of synchrotron and dust emission. The initial estimation of synchrotron contribution at 300 GHz in these cases is of ≳10%. Assuming a scenario where the continuum emission is solely due to cold dust as an upper limit, we obtained infrared (IR) luminosities ofLIR ∼ 1011 − 12 L⊙. We compared the properties of the sources inspected here with a large collection of radio-quiet sources from the literature, as well as a sample of RL quasars from previous studies at comparable redshifts. We recovered a mild potential decrease inL[C II]for the RL sources, which might be due to a suppression of the cool gas emission due to the radio jets. We did not find any [C II] emitting companion galaxy candidate around the five RL quasars observed in Band 7. Given the depth of our dataset, this result is still consistent with what has been observed around radio-quiet quasars. Future higher spatial-resolution observations, over a broader frequency range, of high−zRL quasars hosts will allow us to further improve our understanding of the physics of these sources.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract We present JWST NIRCam imaging targeting 13z ~ 3 infrared-luminous (LIR ∼ 5 × 1012L⊙) galaxies from the ALESS survey with uniquely deep, high-resolution (0 08–0 16) Atacama Large Millimeter/submillimeter Array 870μm imaging. The 2.0–4.4μm (observed frame) NIRCam imaging reveals the rest-frame near-infrared stellar emission in these submillimeter-selected galaxies at the same (sub)kiloparsec resolution as the 870μm dust continuum. The newly revealed stellar morphologies show striking similarities with the dust continuum morphologies at 870μm, with the centers and position angles agreeing for most sources, clearly illustrating that the spatial offsets reported previously between the 870μm and Hubble Space Telescope morphologies were due to strong differential dust obscuration. The F444W sizes are 78% ± 21% larger than those measured at 870μm, in contrast to recent results from hydrodynamical simulations that predict larger 870μm sizes. We report evidence for significant dust obscuration in F444W for the highest-redshift sources, emphasizing the importance of longer-wavelength MIRI imaging. The majority of the sources show evidence that they are undergoing mergers/interactions, including tidal tails/plumes—some of which are also detected at 870μm. We find a clear correlation between NIRCam colors and 870μm surface brightness on ∼1 kpc scales, indicating that the galaxies are primarily red due to dust—not stellar age—and we show that the dust structure on ∼kpc scales is broadly similar to that in nearby galaxies. Finally, we find no strong stellar bars in the rest-frame near-infrared, suggesting the extended bar-like features seen at 870μm are highly obscured and/or gas-dominated structures that are likely early precursors to significant bulge growth.more » « less
-
ABSTRACT We present a new method for modelling the kinematics of galaxies from interferometric observations by performing the optimization of the kinematic model parameters directly in visibility space instead of the conventional approach of fitting velocity fields produced with the clean algorithm in real-space. We demonstrate our method on Atacama Large Millimeter/submillimeter Array (ALMA) observations of $$^{12}$$CO (2–1), (3–2), or (4–3) emission lines from an initial sample of 30 massive 850 $$\mu$$m-selected dusty star-forming galaxies with far-infrared luminosities $$\gtrsim$$\, 10^{12}$$ L$$_{\odot }$$ in the redshift range $$z \sim$$ 1.2–4.7. Using the results from our modelling analysis for the 12 of the 20 sources with the highest signal-to-noise emission lines that show disc-like kinematics, we conclude the following: (i) our sample prefers a CO-to-$$H_2$$ conversion factor, of $$\alpha _{\rm CO} = 0.74 \pm 0.37$$; (ii) these far-infrared luminous galaxies follow a similar Tully–Fisher relation between the circular velocity, $$V_{\rm circ}$$, and baryonic mass, $$M_{\rm b}$$, as less strongly star-forming samples at high redshift, but extend this relation to much higher masses – showing that these are some of the most massive disc-like galaxies in the Universe; (iii) finally, we demonstrate support for an evolutionary link between massive high-redshift dusty star-forming galaxies and the formation of local early-type galaxies using the both the distributions of the baryonic and kinematic masses of these two populations on the $$M_{\rm b}$$ – $$\sigma$$ plane and their relative space densities.more » « less
-
We present a study of new 7.7–11.3 μm data obtained with theJames WebbSpace Telescope Mid-InfraRed Instrument in the starburst galaxy M 82. In particular, we focus on the dependency of the integrated CO(1–0) line intensity on the MIRI-F770W and MIRI-F1130W filter intensities to investigate the correlation between H2content and the 7.7 and 11.3 μm features from polycyclic aromatic hydrocarbons (PAH) in M 82’s outflows. To perform our analysis, we identify CO clouds using the archival12CO(J = 1 − 0) NOEMA moment 0 map within 2 kpc from the center of M 82, with sizes ranging between ∼21 and 270 pc; then, we compute the CO-to-PAH relations for the 306 validated CO clouds. On average, the power-law slopes for the two relations in M 82 are lower than what is seen in local main-sequence spirals. In addition, there is a moderate correlation betweenICO(1 − 0) − I7.7 μm/I11.3 μmfor some of the CO cloud groups analyzed in this work. Our results suggest that the extreme conditions in M 82 translate into CO not tracing the full budget of molecular gas in smaller clouds, perhaps as a consequence of photoionization and/or emission suppression of CO molecules due to hard radiation fields from the central starburst.more » « lessFree, publicly-accessible full text available March 1, 2026
-
ABSTRACT The optical spectra of novae are characterized by emission lines from the hydrogen Balmer series and either Fe ii or He/N, leading to their traditional classification into two spectral classes: ‘Fe ii’ and ‘He/N’. For decades, the origins of these spectral features were discussed in the literature in the contexts of different bodies of gas or changes in the opacity of the ejecta, particularly associated with studies by R. E. Williams and S. N. Shore. Here, we revisit these major studies with dedicated, modern data sets, covering the evolution of several novae from early rise to peak all the way to the nebular phase. Our data confirm previous suggestions in the literature that the ‘Fe ii’ and ‘He/N’ spectral classes are phases in the spectroscopic evolution of novae driven primarily by changes in the opacity, ionization, and density of the ejecta, and most if not all novae go through at least three spectroscopic phases as their eruptions evolve: an early He/N (phase 1; observed during the early rise to visible peak and characterized by P Cygni lines of He i and N ii/iii), then an Fe ii (phase 2; observed near visible peak and characterized by P Cygni lines of Fe ii and O i), and then a later He/N (phase 3; observed during the decline and characterized by emission lines of He i/ii, N ii/iii), before entering the nebular phase. This spectral evolution seems to be ubiquitous across novae, regardless of their speed class; however the duration of each of these phases differs based on the speed class of the nova.more » « less
-
Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.more » « less
-
Abstract We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Lyαabsorbers (DLAs) atz≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz= 2.4604 using NOEMA, associated with thez= 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of % and %, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi–selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M⊙. This indicates that the highest-metallicity DLAs atz≈ 2 are associated with the most massive galaxies. The newly identifiedz≈ 2.4604 Hi–selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (αCO/4.36) × (r31/0.55)M⊙. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σupper limit of 2.3M⊙yr−1on the unobscured star formation rate (SFR). The low NUV-based SFR estimate, despite the very high molecular gas mass, indicates that DLA0201+365g either is a very dusty galaxy, or has a molecular gas depletion time that is around 2 orders of magnitude larger than that of star-forming galaxies at similar redshifts.more » « less
-
One practical approach towards robust and stable biomimetic platforms is to generate hybrid bilayers that incorporate both lipids and block co-polymer amphiphiles. The currently limited number of reports on the interaction of glass surfaces with hybrid lipid and polymer vesicles—DOPC mixed with amphiphilic poly(ethylene oxide-b-butadiene) (PEO-PBd)—describe substantially different conclusions under very similar conditions (i.e., same pH). In this study, we varied vesicle composition and solution pH in order to generate a broader picture of spontaneous hybrid lipid/polymer vesicle interactions with rigid supports. Using quartz crystal microbalance with dissipation (QCM-D), we followed the interaction of hybrid lipid-polymer vesicles with borosilicate glass as a function of pH. We found pH-dependent adsorption/fusion of hybrid vesicles that accounts for some of the contradictory results observed in previous studies. Our results show that the formation of hybrid lipid-polymer bilayers is highly pH dependent and indicate that the interaction between glass surfaces and hybrid DOPC/PEO-PBd can be tuned with pH.more » « less
An official website of the United States government
